Flipped Classroom Model in the Teaching-Learning Process of Limit Calculation in First Year of High School
Keywords:
Flipped Classroom, Limit Calculus, High School Teaching, and MathematicsAbstract
Introduction: This project aims to achieve meaningful learning of the notion of limits in first-year high school students by implementing a teaching approach based on the Flipped Classroom pedagogical model, which adapts and accommodates each student's learning pace, facilitating their level of understanding and educational needs.
Materials and Methods: This model was implemented in an urban public school located in the city of Ambato, Ecuador. The school offers internet service for students in the computer labs. Students from peripheral areas of the city attend this institution. Therefore, it is necessary to implement a new pedagogical model that transforms the traditional order of class development into two phases: student work outside the classroom and work inside the classroom. In the first phase, students are sent pre-edited videos with activities on the Edpuzzle platform. In the second phase, higher-order cognitive activities are carried out. The effectiveness of this pedagogical model is assessed externally and internally through a SWOT analysis, which involves direct observation of the learning process and the application of assessment rubrics at the end of each session. Throughout this teaching intervention, the teacher applies the Flipped Classroom methodological model because it adapts to the student's learning pace. This model is supported by the Edpuzzle tool, which together led to significant learning of the notion of limits.
Results: In summary, considering all the information from the fact-perceptible stage of the research, the need and desirability of a proposal that contributes to the development of limit calculations in first-year high school students has been highlighted. One effort in this direction is the proposed intervention to achieve meaningful learning in limit calculations.
Discussion: Learning mathematics poses many challenges for students, and these challenges come in a variety of forms. However, in general, their origin is realized in the educational microsystem: student, subject matter, teacher, and school institution (Socas, 1997). Some teachers, in their attempt to simplify the learning of the notion of limits, make mistakes that, over time, become problematic for their students and for themselves (Hitt, 2016). The Flipped Classroom Model proposal helps avoid these errors and strengthen students' understanding of limits.
Conclusions: From everything presented during this project, which considered the Flipped Classroom Model for learning limit calculus, despite requiring teachers to dedicate much more time to learning new tools to improve planning, it provides students with greater learning advantages. Therefore, the following conclusions can be drawn.
References
Vergara, A. M., Arteaga, A. E., y Barrios, C. O. (2020). La formación de conceptos matemáticos en el proceso de enseñanza-aprendizaje de la Matemática. Revista Conrado, 16(74), 298-305. Obtenido de http://scielo.sld.cu/pdf/rc/v16n74/1990-8644-rc-16-74-298.pdf
Ayuda Universitaria. (18 de Junio de 2021). Propuesta Didáctica: Hazla Perfecta Así. Obtenido de Ayuda Universitaria: https://www.ayudauniversitaria.com/propuesta-didactica/#:~:text=Una%20propuesta%20did%C3%A1ctica%20es%20una,proceso%20de%20ense%C3%B1anza%20y%20aprendizaje.
Barreno, N., Cachuput, J., Martinez, J., y Román, M. (2018). Límites y Continuidad de una Función Real. Guayaquil, Ecuador: Grupo Compás. Obtenido de http://cimogsys.espoch.edu.ec/direccion-publicaciones/public/docs/books/2019-09-19-144049-79%20Libro%20L%C3%ADmites%20y%20Continuidad%20de%20una%20Funci%C3%B3n%20Real.pdf
Belloch, C. (2012). Las Tecnologías de la Información y la Comunicación en el aprendizaje. Obtenido de Departamento de Métodos de Investigación y Diagnóstico en Educación. Universidad de Valencia: http://www.uv.es/bellochc/pedagogia/EVA1.pdf
Bermann, J., y Sams, A. (2014). Dale la vuelta a tu clase: Lleva tu clase a cada estudiante, en cualquier momento y en cualquier lugar. Madrid: Ediciones SM. Obtenido de https://aprenderapensar.net/wp-content/uploads/2014/05/156140_Dale-la-vuelta-a-tu-clase.pdf
Blázquez, S., y Ortega, T. (2001). Los sistemas de representación en la enseñanza de límites. Revista Latinoamericana de investigación en matemática educativa, 4(3), 219-236. Obtenido de Dialnet-LosSistemasDeRepresentacionEnLaEnsenanzaDelLimite-2147876.pdf
Carretero, M. (2021). Constructivismo y educación. Buenos Aires: Tilde Editorial.
Castillo, S. (2008). Propuesta pedagógica basada en el constructivismo para el uso óptimo de las TIC en la enseñanza y aprendizaje de la matemática. Revista Latinoamericana de la investigación en la matemática educativa, 11(2), 171-194. Obtenido de http://www.scielo.org.mx/scielo.php?pid=S1665-24362008000200002&script=sci_abstract&tlng=pt
Churches, A. (2009). Taxonomía de Bloom para la era digital. Academia. edu. Obtenido de http://eduteka.icesi.edu.co/articulos/TaxonomiaBloomDigital
Coll, C., Matín, E., Mauri, T., Miras, M., Onrubia, J., Solé, I., y Zabala, A. (1993). El constructivismo en el aula. Barcelona: Editorial Groo. Obtenido de https://books.google.com.ec/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Washington Bolívar Laica Sailema

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal provides immediate open access to its content, based on the principle that offering the public free access to research helps a greater global exchange of knowledge. Each author is responsible for the content of each of their articles.






















Universidad de Oriente