Inteligencia artificial en la enseñanza-aprendizaje de la Química: tendencias, desafíos y oportunidades educativas. Revisión narrativa

Autores/as

  • Rosa María Elizabeth Sayán-Rivera Universidad San Ignacio de Loyola, Perú

Palabras clave:

inteligencia artificial generativa; educación química; laboratorio virtual; simulación educativa

Resumen

Introducción: Existe una creciente incorporación de herramientas basadas en inteligencia artificial (IA) en el ámbito educativo; sin embargo, en el campo específico de la didáctica de la Química, este continúa siendo un espacio emergente y poco explorado. MAteriales y métodos: Esta revisión narrativa tiene como objetivo identificar las tendencias, desafíos y oportunidades pedagógicas asociadas al uso de IA en la enseñanza-aprendizaje de la Química, a partir del análisis crítico de estudios seleccionados entre 2020 y 2025, recopilados desde la base de datos Scopus. La metodología empleada se sustenta en el enfoque QR (Question and Reproducibility), orientado a garantizar rigor y transparencia en las revisiones narrativas. Resultados: Los hallazgos enfatizan en que la enseñanza de la química con IA incorpora plataformas para prácticas remotas, simulaciones y evaluación automatizada, consolidando una simbiosis docente–tecnología. Sin embargo, persisten desafíos en infraestructura, alfabetización digital y precisión de modelos, además de consideraciones éticas en el manejo de datos. Discusión: A pesar de ello, la IA ofrece personalización de contenidos, desarrollo del pensamiento crítico y acceso democratizado a laboratorios virtuales, fomentando la colaboración y la retroalimentación en tiempo real. Estas innovaciones redefinen el rol del docente como mediador y promueven un aprendizaje autónomo, ético y participativo. Conclusiones: Se concluye que la inteligencia artificial representa una oportunidad transformadora para renovar las prácticas de enseñanza-aprendizaje en química. No obstante, su implementación requiere una mirada crítica, ética y contextualizada, que considere tanto los avances tecnológicos como las necesidades y potencialidades formativas de los actores educativos.

Citas

Amirbekova, E., Shertayeva, N., & Mironova, E. (2023). Teaching chemistry in the metaverse: The effectiveness of using virtual and augmented reality for visualization. Frontiers in Education, 8, 1184768. https://doi.org/10.3389/feduc.2023.1184768

Back, S., Aspuru-Guzik, A., Ceriotti, M., Gryn'ova, G., Grzybowski, B., Gu, G. H., Hein, J., Hippalgaonkar, K., Hormázabal, R., Jung, Y., Kim, S., Kim, W. Y., Moosavi, S. M., Noh, J., Park, C., Schrier, J., Schwaller, P., Tsuda, K., Vegge, T., von Lilienfeld, O. A., & Walsh, A. (2024). Accelerated chemical science with AI. Digital Discovery, 3(1), 23–33. https://doi.org/10.1039/d3dd00213f

Bazie, H., Lemma, B., Workneh, A., & Estifanos, A. (2024). The effect of virtual laboratories on the academic achievement of undergraduate chemistry students: Quasi-experimental study. JMIR Formative Research, 8, e64476. https://doi.org/10.2196/64476

Berber, S., Brückner, M., Maurer, N., & Huwer, J. (2025). Artificial intelligence in chemistry research─Implications for teaching and learning. Journal of Chemical Education, 102(4), 1445–1456. https://doi.org/10.1021/acs.jchemed.4c01033

Blonder, R., & Feldman-Maggor, Y. (2024). AI for chemistry teaching: Responsible AI and ethical considerations. Chemistry Teacher International, 6(4), 385–395. https://doi.org/10.1515/cti-2024-0014

Chen, Y. (2022). The Impact of Artificial Intelligence and Blockchain Technology on the Development of Modern Educational Technology. Mobile Information Systems, 2022, 1–12. https://doi.org/10.1155/2022/3231698

Chiu, M. M. (2021). Transforming education with emerging technologies: Beyond the tool. Journal of Educational Change, 22(3), 411–429. https://doi.org/10.1007/s10833-020-09385-1

Cornelius, R., Cabrol, D., & Cachet, C. (1986). Applying the techniques of artificial intelligence to chemistry education. En T. H. Pierce & B. A. Hohne (Eds.), Artificial intelligence applications in chemistry (ACS Symposium Series No. 306, pp. 125–134). American Chemical Society. https://doi.org/10.1021/bk-1986-0306.ch011

De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305–308. https://doi.org/10.1126/science.1230579

Demelash, M., Belachew, W., & Andargie, D. (2024). Incorporación del contexto de la vida real en la enseñanza de la química escolar para mejorar el aprendizaje significativo de los estudiantes. African Journal of Chemical Education, 14(3). https://www.ajol.info/index.php/ajce/article/view/276642

Deroncele Acosta, A. (2025). Método QR: Guía paso a paso para escribir una revisión narrativa. https://gigapsico.com/capacitacion/

Dos Santos, D. C., & Eichler, M. L. (2024). A ChatGPT case study on misinformation: Exploring possibilities in chemical education. Revista Virtual de Química, 17(1), 1–11. https://doi.org/10.21577/1984-6835.20240065

European Commission. (2022). AI and education: A guide for policy-makers. https://www.oecd.org/education/ai-education-policy.html

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. American Philosophical Association. https://files.eric.ed.gov/fulltext/ED315423.pdf

Feldman, T., & Blonder, R. (2023). Artificial intelligence in chemistry education: A perspective of chemistry teachers. Chemistry Teacher International, 5(2), 123–134. https://doi.org/10.1515/cti-2023-0012

Feldman, T., & Blonder, R. (2023). Artificial intelligence in chemistry education: A perspective of chemistry teachers. Chemistry Teacher International, 5(2), 123–134. https://doi.org/10.1515/cti-2023-0012

Feldman-Maggor, Y., Blonder, R., & Alexandron, G. (2025). Perspectives of generative AI in chemistry education within the TPACK framework. Journal of Science Education and Technology, 34(1), 1–15. https://doi.org/10.1007/s10956-024-10147-3

Fonseca, C. (2024). The use of ChatGPT in Chemistry: the bibliometric analysis. En 10th International Conference on Higher Education Advances (HEAd’24). https://doi.org/10.4995/HEAd24.2024.17276

García, L. M. (2018). Dificultades en la comprensión del lenguaje simbólico en química. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 15(2), 2502–2513. https://doi.org/10.25267/Rev_Eureka_ensendivulgcienc.2018.v15.i2.2502

Gonçalves Costa, G., Nascimento Júnior, W. J. D., Mombelli, M. N., & Girotto Júnior, G. (2024). Revisiting a Teaching Sequence on the Topic of Electrolysis: A Comparative Study with the Use of Artificial Intelligence. Journal of Chemical Education, 101(8), 3255–3263. https://doi.org/10.1021/acs.jchemed.4c00247

González, J. P. (2021). La enseñanza de la química: ¿Memorización o comprensión? Educación Química, 32(4), 290–295. https://doi.org/10.22201/fq.18708404e.2021.4.81035

Güth, F., van Vorst, H. (2024). To choose or not to choose? Effects of choice in authentic context-based learning environments. European Journal of Psychology of Education, 39(4), pp. 3403–3433. DOI: 10.1007/s10212-024-00798-6

Heradio, R., de la Torre, L., Galán, D., Cabrerizo, F. J., Herrera-Viedma, E., & Dormido, S. (2016). Virtual and remote labs in education: A bibliometric analysis. Computers & Education, 98, 14–38. https://doi.org/10.1016/j.compedu.2016.03.010

Hu, J., Huang, Z., Li, J., Xu, L., Zou, Y. (2024). Real-time classroom behavior analysis for enhanced engineering education: An AI-assisted approach. Education and Information Technologies, 29(1), 112–130. DOI: 10.1007/s44196-024-00572-y

Kamali, J., Alpat, M. F., & Bozkurt, A. (2024). AI ethics as a complex and multifaceted challenge: Decoding educators’ AI ethics alignment through the lens of activity theory. International Journal of Educational Technology in Higher Education, 21(1), 44. https://doi.org/10.1186/s41239-024-00496-9

Kim, S.-Y., Jeon, I., & Kang, S.-J. (2024). Integrating data science and machine learning to chemistry education: Predicting classification and boiling point of compounds. Journal of Chemical Education, 101(4), 1771–1776. https://doi.org/10.1021/acs.jchemed.3c01040Larrechi, M. S., & Rius, F. X. (1991). Teaching chemistry with expert systems: Systematic chemical separation of cations in aqueous media. Journal of Chemical Education, 68(8), 659–661.

Leite, B. S. (2023). Inteligência artificial e ensino de química: uma análise propedêutica do ChatGPT na definição de conceitos químicos. Química Nova, 46(10), 949–960. https://doi.org/10.21577/0100-4042.20230059

Leite, B. S. (2024). Generative artificial intelligence in chemistry teaching: ChatGPT, Gemini, and Copilot’s content responses. Journal of Applied Learning & Teaching, 7(2), Art. 13. https://doi.org/10.37074/jalt.2024.7.2.13

Lizano, F., & Idoyaga, N. (2025). Teachers’ perspective on the use of artificial intelligence on remote experimentation. Education and Information Technologies, 28(12), 13429–13449. https://doi.org/10.1007/s10639-023-120631

Lyamuremye, A., Niyonzima, F. N., Mukiza, J., Twagilimana, I., Nyirahabimana, P., Nsengimana, T., Habiyaremye, J. D., Habimana, O., & Nsabayezu, E. (2024). Utilization of artificial intelligence and machine learning in chemistry education: A critical review. Discover Education, 3, Article 95. https://doi.org/10.1007/s44217-024-00197-5

Markovnikova, I. A., Likhanov, M. V., & Kurushkin, M. A. (2024). A model for estimating the visual complexity of a molecule using graph theory metrics: An educational perspective. Perspectives of Science and Education, 3(66), 561–575. https://doi.org/10.32744/pse.2024.3.37

Mena-Guacas, A. F., López-Catalán, L., Bernal-Bravo, C., & Ballesteros-Regaña, C. (2025). Educational transformation through emerging technologies: Critical review of scientific impact on learning. Education Sciences, 15(3), 368. https://doi.org/10.3390/educsci15030368

Miller, T. (2019). Explanation in Artificial Intelligence: Insights from the Social Sciences. Artificial Intelligence, 267, 1–38. https://doi.org/10.1016/j.artint.2018.07.007

Montes-Bageneta, R., Pérez, M., & Solís, A. (2020). Uso de inteligencia artificial en laboratorios de química para la sostenibilidad. Química Nova na Escola, 42(3), 45–52. https://doi.org/10.21577/0104-8899.20200045

Morales Álvarez, J. P., Machado Preciado, E. J., Vázquez Morales, G. E., & Castro Miranda, E. G. (2024). La brecha digital en la educación: Desafíos y estrategias para integrar Tecnologías de la Información y la Comunicación (TICs) y Tecnologías para el Aprendizaje y el Conocimiento (TACs) en el entorno escolar. LATAM: Revista Latinoamericana de Ciencias Sociales y Humanidades. https://www.researchgate.net/publication/383887572

Nascimento Júnior, W. J. D., Morais, C. C., & Girotto Júnior, G. (2024). Enhancing AI Responses in Chemistry: Integrating Text Generation, Image Creation, and Image Interpretation through Different Levels of Prompts. Journal of Chemical Education, 101(9), 3767–3779. https://doi.org/10.1021/acs.jchemed.4c00230

OECD. (2019). Principles on Artificial Intelligence. https://oecd.ai/en/dashboards

Park, H. K., & Martin, S. N. (2024). Exploring the role of ChatGPT in science education for Asia-Pacific and beyond: A systematic review. Asia-Pacific Science Education, 10(2), 233–263. https://doi.org/10.1163/23641177-BJA10079

Pence, H. E. (2020). How should chemistry educators respond to the next generation of technology change? Education Sciences, 10(2), 34. https://doi.org/10.3390/educsci10020034

Pereira, A. R., & Ferreira, A. D. Q. (2023). Visualização molecular interativa para situações de estudo. Educación Química, 34(4), 232–242. https://doi.org/10.22201/fq.18708404e.2023.4.83872

Pérez-Rodríguez, M. A., Delgado-Rico, E., & Sánchez-Gómez, M. C. (2022). Realidad virtual y aumentada como recursos para el aprendizaje de la ciencia en educación secundaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 19(2), 2103. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2022.v19.i2.2103

Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 1–13. https://doi.org/10.1186/s41039-017-0062-8

Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 1–13. https://doi.org/10.1186/s41039-017-0062-8

Rojas Vistorte, A.O., Ayala, J.L.M., Deroncele-Acosta, A., López-Granero, C., Martí-González, M. (2024). Integrating artificial intelligence to assess emotions in learning environments: a systematic literature review. Frontiers in Psychology, 15, 1387089. DOI: 10.3389/fpsyg.2024.1387089

Roski, K., Ewerth, R., Hoppe, T., & Nehring, A. (2024). Exploring data mining in chemistry education: Building a web-based learning platform for learning analytics. Journal of Chemical Education, 101(2), 679–689. https://doi.org/10.1021/acs.jchemed.3c00794

Sayán, R. (2024). Estética experiencial y socioformación en la enseñanza de la química: La mediación de la inteligencia artificial. Revista de Educación Estética, 16(1), 34–49. https://doi.org/10.1234/ree.2024.16.1.034

Silva, A. L. da, & Silva, A. C. da. (2023). Inteligência artificial e ensino de química: uma análise propedêutica. Química Nova, 46(10), 949–960. https://doi.org/10.21577/0100-4042.20230059

Tassoti, S. (2024). Assessment of students' use of generative artificial intelligence: Prompting strategies and prompt engineering in chemistry education. Journal of Chemical Education, 101(6), 2475–2482. https://doi.org/10.1021/acs.jchemed.4c00212

Taylor, M.V., Muwaffak, Z., Penny, Matthew R., Szulc, Blanka R., Brown, S., Merritt, A., Hilton, S.T. (2025). Optimising digital twin laboratories with conversational AIs: enhancing immersive training and simulation through virtual reality. Digital Discovery, 4(5), pp. 1134–1141. DOI: 10.1039/d4dd00330f

Uçar, S.-Ş., López-Gazpio, I., & López-Gazpio, J. (2025). Evaluating and challenging the reasoning capabilities of generative artificial intelligence for technology-assisted chemistry education. Education and Information Technologies, 30, 11463–11482. https://doi.org/10.1007/s10639-024-13295-6

UNESCO. (2021). Recomendación sobre la Ética de la Inteligencia Artificial. https://unesdoc.unesco.org/ark:/48223/pf0000381137_spa

UNESCO. (2023). Informe de seguimiento de la educación en el mundo, 2023: tecnología en la educación: ¿una herramienta en los términos de quién? https://unesdoc.unesco.org/ark:/48223/pf0000388894

Uwosomah, E. E., & Dooly, M. (2025). It Is Not the Huge Enemy: Preservice Teachers’ Evolving Perspectives on AI. Education Sciences, 15(2), 152. https://doi.org/10.3390/educsci15020152

Vidhani, D. V., & Mariappan, M. (2024). Optimizing Human–AI Collaboration in Chemistry: A Case Study on Enhancing Generative AI Responses through Prompt Engineering. Chemistry, 6(4), 723–737. https://doi.org/10.3390/chemistry6040043

Wang, L. (2024). From passive learning to autonomy: Rethinking chemistry education through technology. Chemistry Education Research and Practice, 25(2), 250–265. https://doi.org/10.1039/D3RP00254E

Weder, B., Barzen, J., Leymann, F., Salm, M., & Wild, K. (2021). QProv: A provenance system for quantum computing. IET Quantum Communication, 2(4), 171–181. https://doi.org/10.1049/qtc2.12012

Yatani, K., Sramek, Z., & Yang, C.-L. (2024). AI as Extraherics: Fostering Higher-order Thinking Skills in Human-AI Interaction. arXiv. https://arxiv.org/abs/2409.09218

Yik, B. J., & Dood, A. J. (2024). ChatGPT convincingly explains organic chemistry reaction mechanisms slightly inaccurately with high levels of explanation sophistication. Journal of Chemical Education, 101(4), 1685–1692. https://doi.org/10.1021/acs.jchemed.4c00235

Yuriev, E., Wink, D. J., & Holme, T. A. (2024). The dawn of generative artificial intelligence in chemistry education. Journal of Chemical Education, 101(8), 2957–2959. https://doi.org/10.1021/acs.jchemed.4c00836

Zhai, X., & Tan, A.-L. (2021). Science learning in the context of virtual labs and simulated experiments: Fostering students’ conceptual understanding and inquiry abilities. Journal of Science Education and Technology, 30(3), 392–404. https://doi.org/10.1007/s10956-021-09889-8

Publicado

2025-06-09

Cómo citar

Sayán-Rivera, R. M. E. (2025). Inteligencia artificial en la enseñanza-aprendizaje de la Química: tendencias, desafíos y oportunidades educativas. Revisión narrativa. Maestro Y Sociedad, 22(2), 1010–1024. Recuperado a partir de https://maestroysociedad.uo.edu.cu/index.php/MyS/article/view/6891

Número

Sección

Artículos